
1

1

Multiprocessor Cache Coherency

CS448

2

What is Cache Coherence?

• Two processors can have two different values for
the same memory location

2

3

Terminology
• Coherence

– Defines what values can be returned by a read
– Coherent if:

• If P writes to X then reads X, with no writes to X by other processors
should return value written by P

• If P writes to X and then another processor reads from X, if read/write
sufficiently separated should return value written by original P

• Writes to the same location are serialized; two writes to the same
location by any two processors are seen in the same order by all
processors

• Consistency
– Determines when a written value will be returned by a read,

we’ll need to define a memory consistency model

4

Techniques to Enforce Coherence

• Directory-based
– Centralized Directory holds the status of sharing a

block of physical memory
– Used with DSM machines

• Snooping
– No centralized directory
– Each cache “snoops” or listens to maintain coherency

among caches
– Used with CSM machines using a bus

3

5

Protocols for Coherency
• Write Invalidate: When one processor writes, invalidate all copies of this data

that may be in other caches

• Write Broadcast: When one processor writes, broadcast the value and update any
copies that may be in other caches

6

Performance Differences
• Multiple writes to the same word

– Multiple broadcasts using update protocol
– Only one initial invalidation using invalidate protocol

• Multiword Cache Bocks
– Invalidation works on cache blocks
– Update must work on individual bytes

• Delay between writing a word and reading it
– Less in write update, data immediately into reader’s cache
– Higher in invalidate, reader must cache miss and go to memory

to fetch the data

• Usually Write Invalidate is used

4

7

Implementing Invalidation

• Bus-based scheme
– Processor to invalidate acquires the bus
– Broadcasts the address to invalidate
– All other processors continuously snoop on the bus

watching the addresses
• If an address is invalidated that matches an address in its

cache, then the corresponding data is invalidated

– Serialization of the bus forces serialization of access
automatically

8

Implementing Invalidation

• Write-through cache
– To locate a data item when a cache miss occurs, just

go to memory (since memory will contain the most
up-to-date value in a write-through cache)

• Write-back cache
– What problem do we have reading in data on a cache

miss when all processors use write-back caches?

5

9

Implementing Invalidation
• Write-Back Cache

– May need to find the most recent value of a data item in some
other processor’s cache, not in memory

– We can do this using the same snooping scheme for cache
misses and writes

• Each processor snoops every address placed on the bus when a read is
requested from memory

• If a processor has a dirty copy of the requested cache block (i.e. one we
wrote to and is hence updated), provide that cache block to the requestor
and abort the memory access

• Since write-back caches generate lower memory
requirements, they are preferred in multiprocessors
despite increased complexity

10

Invalidation with Write-Back
Cache

• Snooping
– Can use normal cache valid, dirty bits to invalidate or

determine if we have the most updated copy
– Add an extra state bit to indicate if a block is shared

• Write to a block in the shared state generates an invalidation on the bus,
marks the block as private

• Writes to a block in the private state don’t generate invalidations since it
should already be invalidated elsewhere

• Move to the shared state when another processor has a read miss (tries to
read this block from memory)

• Example protocol
– Each cache uses a finite-state transition diagram to determine

the proper state and action

6

11

Write-Invalidate Write-Back
Cache Coherence Protocol

Action by CPU owner of cache Action from Bus

Normal font = stimulus
Bold font = action

12

Explanation of Previous Slide
• Left side: state transitions based on actions of the CPU associated

with the cache
• Right side: state transitions based on actions of other CPU’s placed

on the bus
• Example

– CPU 1 starts in invalid; places read miss, reads block X, goes to shared state
– CPU 1 re-reads block X, these are read hits
– CPU 2 reads block X, places read miss, reads block X, goes to shared state
– CPU 1 writes block X, always places write miss, moves to exclusive state

• CPU 2 using right side reads write-miss and moves to Invalid state
– CPU 1 writes or reads block X, stays in exclusive state
– CPU 2 reads block X, places read miss

• CPU 1 using right side gets read miss and moves to shared mode,
supplies correct memory block to CPU 2

• CPU 2 moves to shared mode

7

13

Merged State Transition Diagram
In practice, we’ll
have a single state
transition diagram
with both types of
stimulus merged
together

Functionally the
same as the split
diagram on the
previous slide

Protocol somewhat
simplified from
those in use today

14

Performance of Snooping
Coherence Protocols

• Use the four parallel programs described earlier as
a benchmark
– Split cache misses into two sets

• Coherence Misses – misses due to cache invalidation
• Capacity Misses – actually capacity, compulsory and

conflict misses, but most of these are capacity. “Normal”
cache misses from a uniprocessor

8

15

Miss Rate vs. Processor Count

Coherence Miss
Rate goes up with
processor count,
more
communication

Overall miss rate
slightly down, due
to more cache as
we add more
processors

High-communication app would be bad

16

Miss Rate vs. Cache Size
Fixed processor count = 16

Miss rate drops as cache size
increased, but varies on the
application

Other variations in the book
on block size, set-associative
cache, etc. Behaves
similarly to the uniprocessor
case

9

17

Distributed Shared Memory
Architectures

• Snooping protocol not so efficient on most DSM
machines
– Snooping requires a broadcast mechanism, which is easy to do

on a bus
– Most DSM systems don’t have a bus but a more complex

system interconnect (mesh, hypercube, etc.) so broadcast
becomes a much more expensive operation

• One solution:
– Prevent coherency by marking shared data as uncacheable
– Private data can still be cached
– For shared data, we must always access through memory
– Simple to implement, but can slow things down if programs are

not written with this model in mind
• Access to remote memory can be quite slow

18

DSM Coherency
• Another solution: software-based coherency

– Possible but slow and conservative, every block that might be
shared treated as if it is shared

• Most popular alternative: Directory Protocol
– Directory keeps the state of every block that may be cached
– Information in the directory includes which caches have copies

of the block, whether it is dirty, shared, etc.
– Centralized version of snooping – this directory is always in the

same location
– Memory requirements for the directory are proportional to the

number of memory blocks * number of processors

10

19

Directory Protocol
• Each directory must track the following states for its

cache blocks
– Shared?

• If shared, what processors are sharing this block?
• This prevents broadcast if we need to invalidate those blocks, instead we

can send a message to only these specific processors
– Uncached?

• Set if no processor has a copy of the cache block
– Exclusive?

• Exactly one processor has a copy of the cache block and has written to it,
so memory copy is out of date

• The processor of the exclusive block is called the owner of the block

• Very similar to the snooping protocol, but the directory
tracks of who has what data

20

Directory Protocol for DSM

Directory added to each node to implement cache coherence
Each directory tracks caching for memory in its node

11

21

Directory Protocol Terminology
• Local node

– Node where a request originates
• Home node

– Node where the memory location and directory entry reside
– Could be the local node as well

• Remote node
– Node that has a copy of a cache block
– Might be exclusive or shared

• Nodes will pass messages to one another; messages will
move a directory between states in a transition diagram,
just like with the snooping protocol

22

Directory Protocol Messages

1-2 : Miss requests by local cache to home
3-5 : Home sends to remote cache when home needs to satisfy request
6 : Home sends requested data to local cache
7 : Block replaced, needs to be written back to home or fetch requested

12

23

Directory-Based State Transition
Diagram

Same as the snooping
protocol diagram,
except we are sending
explicit messages
instead of putting data
on a common bus

24

Directory-Based Performance

• Use same parallel programs as for the snooping
protocol for our benchmark

• Miss rate broken into two categories
– Local misses
– Remote misses

• Remote misses are much more expensive than local misses
– Longer read latencies to traverse interconnect
– Will want to have bigger caches to avoid the latencies

• Mostly will be coherence misses

13

25

Miss Rate vs. Num Processors

Anomaly here

As with snooping
caches, remote misses
increases somewhat as
processor count
increases

26

Miss Rate vs. Cache Size
P fixed at 64

Miss rates decrease
as cache size grows,
as you would expect!

Plateau varies with
the application

14

27

Summary
• Coherence protocols may be needed for correct program

behavior
• Most common protocol is write-back cache, write

invalidation
• Can use snooping or directory based mechanism to

implement coherence
• Coherence requests become more important in programs

that are less optimized
– Optimized programs will access most data locally and have

fewer requests
– Exactly how the cache miss rates affect CPU performance

depends on the memory system, interconnect, latency,
bandwidth, etc.

