
1

1

Multiprocessor Cache Coherency

CS448
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What is Cache Coherence?

• Two processors can have two different values for 
the same memory location
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Terminology
• Coherence

– Defines what values can be returned by a read
– Coherent if:

• If P writes to X then reads X, with no writes to X by other processors 
should return value written by P

• If P writes to X and then another processor reads from X, if read/write 
sufficiently separated should return value written by original P

• Writes to the same location are serialized; two writes to the same 
location by any two processors are seen in the same order by all
processors

• Consistency
– Determines when a written value will be returned by a read, 

we’ll need to define a memory consistency model
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Techniques to Enforce Coherence

• Directory-based
– Centralized Directory holds the status of sharing a 

block of physical memory
– Used with DSM machines

• Snooping
– No centralized directory
– Each cache “snoops” or listens to maintain coherency 

among caches
– Used with CSM machines using a bus
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Protocols for Coherency
• Write Invalidate: When one processor writes, invalidate all copies of this data 

that may be in other caches

• Write Broadcast: When one processor writes, broadcast the value and update any 
copies that may be in other caches
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Performance Differences
• Multiple writes to the same word

– Multiple broadcasts using update protocol
– Only one initial invalidation using invalidate protocol

• Multiword Cache Bocks
– Invalidation works on cache blocks
– Update must work on individual bytes

• Delay between writing a word and reading it
– Less in write update, data immediately into reader’s cache
– Higher in invalidate, reader must cache miss and go to memory 

to fetch the data

• Usually Write Invalidate is used
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Implementing Invalidation

• Bus-based scheme
– Processor to invalidate acquires the bus
– Broadcasts the address to invalidate
– All other processors continuously snoop on the bus 

watching the addresses
• If an address is invalidated that matches an address in its 

cache, then the corresponding data is invalidated

– Serialization of the bus forces serialization of access 
automatically
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Implementing Invalidation

• Write-through cache
– To locate a data item when a cache miss occurs, just 

go to memory (since memory will contain the most 
up-to-date value in a write-through cache)

• Write-back cache
– What problem do we have reading in data on a cache 

miss when all processors use write-back caches?
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Implementing Invalidation
• Write-Back Cache

– May need to find the most recent value of a data item in some 
other processor’s cache, not in memory

– We can do this using the same snooping scheme for cache 
misses and writes

• Each processor snoops every address placed on the bus when a read is 
requested from memory

• If a processor has a dirty copy of the requested cache block (i.e. one we 
wrote to and is hence updated), provide that cache block to the requestor 
and abort the memory access

• Since write-back caches generate lower memory 
requirements, they are preferred in multiprocessors 
despite increased complexity

10

Invalidation with Write-Back 
Cache

• Snooping
– Can use normal cache valid, dirty bits to invalidate or 

determine if we have the most updated copy
– Add an extra state bit to indicate if a block is shared

• Write to a block in the shared state generates an invalidation on the bus, 
marks the block as private

• Writes to a block in the private state don’t generate invalidations since it 
should already be invalidated elsewhere

• Move to the shared state when another processor has a read miss (tries to 
read this block from memory)

• Example protocol
– Each cache uses a finite-state transition diagram to determine 

the proper state and action
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Write-Invalidate Write-Back 
Cache Coherence Protocol

Action by CPU owner of cache                Action from Bus

Normal font = stimulus
Bold font = action
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Explanation of Previous Slide
• Left side: state transitions based on actions of the CPU associated 

with the cache
• Right side: state transitions based on actions of other CPU’s placed 

on the bus
• Example

– CPU 1 starts in invalid; places read miss, reads block X, goes to shared state
– CPU 1 re-reads block X, these are read hits
– CPU 2 reads block X, places read miss, reads block X, goes to shared state
– CPU 1 writes block X, always places write miss, moves to exclusive state

• CPU 2 using right side reads write-miss and moves to Invalid state
– CPU 1 writes or reads block X, stays in exclusive state
– CPU 2 reads block X, places read miss

• CPU 1 using right side gets read miss and moves to shared mode, 
supplies correct memory block to CPU 2

• CPU 2 moves to shared mode
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Merged State Transition Diagram
In practice, we’ll 
have a single state 
transition diagram 
with both types of 
stimulus merged 
together

Functionally the 
same as the split 
diagram on the 
previous slide

Protocol somewhat 
simplified from 
those in use today
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Performance of Snooping 
Coherence Protocols

• Use the four parallel programs described earlier as 
a benchmark
– Split cache misses into two sets

• Coherence Misses – misses due to cache invalidation
• Capacity Misses – actually capacity, compulsory and 

conflict misses, but most of these are capacity.   “Normal” 
cache misses from a uniprocessor
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Miss Rate vs. Processor Count

Coherence Miss 
Rate goes up with 
processor count, 
more 
communication

Overall miss rate 
slightly down, due 
to more cache as 
we add more 
processors

High-communication app would be bad
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Miss Rate vs. Cache Size
Fixed processor count = 16 

Miss rate drops as cache size 
increased, but varies on the 
application

Other variations in the book 
on block size, set-associative 
cache, etc.  Behaves 
similarly to the uniprocessor 
case
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Distributed Shared Memory 
Architectures

• Snooping protocol not so efficient on most DSM 
machines
– Snooping requires a broadcast mechanism, which is easy to do 

on a bus
– Most DSM systems don’t have a bus but a more complex 

system interconnect (mesh, hypercube, etc.) so broadcast 
becomes a much more expensive operation

• One solution:
– Prevent coherency by marking shared data as uncacheable
– Private data can still be cached
– For shared data, we must always access through memory
– Simple to implement, but can slow things down if programs are 

not written with this model in mind
• Access to remote memory can be quite slow
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DSM Coherency
• Another solution: software-based coherency

– Possible but slow and conservative, every block that might be 
shared treated as if it is shared

• Most popular alternative: Directory Protocol
– Directory keeps the state of every block that may be cached
– Information in the directory includes which caches have copies 

of the block, whether it is dirty, shared, etc.
– Centralized version of snooping – this directory is always in the 

same location
– Memory requirements for the directory are proportional to the 

number of memory blocks * number of processors
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Directory Protocol
• Each directory must track the following states for its 

cache blocks
– Shared?

• If shared, what processors are sharing this block?
• This prevents broadcast if we need to invalidate those blocks, instead we 

can send a message to only these specific processors
– Uncached?

• Set if no processor has a copy of the cache block
– Exclusive?

• Exactly one processor has a copy of the cache block and has written to it, 
so memory copy is out of date

• The processor of the exclusive block is called the owner of the block

• Very similar to the snooping protocol, but the directory 
tracks of who has what data
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Directory Protocol for DSM 

Directory added to each node to implement cache coherence
Each directory tracks caching for memory in its node
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Directory Protocol Terminology
• Local node

– Node where a request originates
• Home node

– Node where the memory location and directory entry reside
– Could be the local node as well

• Remote node
– Node that has a copy of a cache block
– Might be exclusive or shared

• Nodes will pass messages to one another; messages will 
move a directory between states in a transition diagram, 
just like with the snooping protocol
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Directory Protocol Messages

1-2 : Miss requests by local cache to home
3-5 : Home sends to remote cache when home needs to satisfy request
6 : Home sends requested data to local cache
7 : Block replaced, needs to be written back to home or fetch requested
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Directory-Based State Transition 
Diagram

Same as the snooping 
protocol diagram, 
except we are sending 
explicit messages 
instead of putting data 
on a common bus
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Directory-Based Performance

• Use same parallel programs as for the snooping 
protocol for our benchmark

• Miss rate broken into two categories
– Local misses
– Remote misses

• Remote misses are much more expensive than local misses
– Longer read latencies to traverse interconnect
– Will want to have bigger caches to avoid the latencies

• Mostly will be coherence misses
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Miss Rate vs. Num Processors

Anomaly here

As with snooping 
caches, remote misses 
increases somewhat as 
processor count 
increases
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Miss Rate vs. Cache Size
P fixed at 64

Miss rates decrease 
as cache size grows, 
as you would expect!

Plateau varies with 
the application
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Summary
• Coherence protocols may be needed for correct program 

behavior
• Most common protocol is write-back cache, write 

invalidation
• Can use snooping or directory based mechanism to 

implement coherence
• Coherence requests become more important in programs 

that are less optimized
– Optimized programs will access most data locally and have 

fewer requests
– Exactly how the cache miss rates affect CPU performance 

depends on the memory system, interconnect, latency, 
bandwidth, etc.


