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Multiprocessors
Chapter 8
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The Greed for Speed
• Two general approaches to making computers faster
• Faster uniprocessor

– All the techniques we’ve been looking at so far, plus others…
– Nice since existing programs still work without changing them, 

except may need to be re-compiled with optimizations
– But diminishing returns with higher cost, as with Amdahl’s law

• Parallel processor
– Typically a collection general purpose uniprocessors today
– Large variation in memory access
– Required for high-end computer systems, e.g. supercomputing, 

DOE ASCI program
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Parallel Processing

• Advantages
– Performance gains possible
– Can be relatively inexpensive today with commodity 

processors
• Disadvantages

– Software must now be changed radically to take 
advantage of the parallel machine

– Hardware challenges
– New types of overhead and organizational problems 

await the parallel machine
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Types of Parallelism
• We’ve already seen some sorts of parallelism…

– lookahead and pipelining
– data and control parallelism
– vectorization
– concurrency
– partitioning
– interleaving physical subsystems (e.g. memory)
– multiplicity and replication (e.g. multiple functional units)
– time and space sharing
– multitasking and multiprogramming
– multithreading
– distributed computing

• We’ll focus primarily on multiprocessing here
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Multiprocessing

• A few issues that stand out from uniprocessing
– Communication

• Interprocessor communication now comes into play
• Can treat similarly to I/O
• Issues of latency and bandwidth

– Resource allocation
• Allocated by programmer, compiler, hardware?
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Communication among Multiple 
Processors

• Software perspective
– Shared memory

• E.g. one processor writes to memory location X, second processor reads 
from memory location X

• Gets complicated with local vs. remote memory
• Sharing and access model
• Issues of speed, contention

– Explicitly send messages to specific processors via send and 
receive

• Similar to how computers operate on a network
• Usually seen as message passing

• Hardware perspective
– Software and hardware models should not conflict for 

efficiency 
• E.g. software treats “broadcast to all” as a cheap operation, when 

processor hardware does not support broadcast efficiently
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Flynn’s Taxonomy
• Proposed in 1972
• SISD – Single Instruction Single Data 

– Current uniprocessor
• SIMD – Single Instruction Multiple Data

– Same instruction operated on in parallel by multiple processors 
using different data streams

• MISD – Multiple Instruction Single Data
– Many instructions operated on in parallel by multiple 

instructions using the same data stream
– No computers use this today

• MIMD – Multiple Instruction Multiple Data
– Most flexible, each processor fetches and operates on its own 

data independently
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SIMD vs. MIMD
• Rise and Fall and Rise of the SIMD machine

– Was the earliest of the parallel computing models
• Iliac IV, Connection Machine, Thinking Machines

– Good at working with arrays in for-loops
– Not so good at case statements, each execution unit must 

perform a different operation on its data
– Revived somewhat today with MMX, SSE

• MIMD Machine more flexible
– Can function as single-user machine for one application or 

multiprogrammed machines running many tasks simultaneously
– Can build on cost/performance advantages of COTS 

microprocessors
– Nearly all multiprocessors today built using commercial 

uniprocessors
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MIMD Architecture
• Two general classes of MIMD machines

– Centralized Shared-Memory (CSM) Architectures
• Typically used with a small number of processors
• Connected to a single centralized memory somehow, typically via a bus
• Sometimes called Uniform Memory Access (UMA) machines
• Scalability issues with larger number of processors

– Distributed Shared Memory (DSM) Architecture
• Individual nodes contain memory, interconnected by some type of 

network
• Easy to scale up memory, good if most accesses are to local memory
• Latency and bandwidth issues between processors becomes key
• Sometimes called Non-Uniform Memory Access (NUMA) machines

• Hybrid machines incorporating features of both are also 
possible

10

Centralized Shared Memory

Note: cache coherency problem
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Distributed Shared Memory
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Example Interconnection 
Networks

2D Mesh
Bus

Hypercube
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Models for Memory, 
Communications

• Shared Memory
– Does not mean there is a single centralized memory

• Address Space
– May consist of multiple private address spaces logically disjoint 

in addition to shared memory
– Essentially separate computers; sometimes called a

multicomputer machine
– For machines with multiple address spaces, communication of 

data performed by explicitly passing data between processors
• Called Message Passing Machines
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Message Passing Machines
• Data transmitted through interconnect similar to sending 

over a LAN
• For processor A to access or operate on data in processor 

B
– A sends message to request data or operation to B
– Message considered a Remote Procedure Call (RPC)
– B performs operation or access on behalf of A and returns the 

result with a reply message
• Synchronous when A waits for reply before continuing
• Asynchronous when A continues operating while waiting 

for reply from B

• Program libraries exist to make RPC and message 
passing easier, e.g. MPI
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Comparison of Communication 
Mechanisms

• Shared Memory Communication
– Compatibility with well-understood mechanisms
– Ease of programming, similar to uniprocessor
– Low overhead for communicating small items

• Memory mapping in hardware, not through OS
– Can use hardware-controlled caching to reduce frequency of 

remote communication
• Message Passing Communication

– Hardware can be simplified in some cases (we’ll see coherent 
caching problems in a minute)

– Communication is explicit, forcing programmers to pay 
attention and optimize (like delayed branch)

• Could be a disadvantage as well!
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Should Match SW to HW
• Message Passing model on shared memory architecture

– Not too difficult, could “send” data by copying from one 
portion of the address space to another

• Shared Memory on Message Passing architecture
– More difficult, without hw support for shared memory, the OS 

will need to handle things
– High overhead for sending small loads and stores

• In either case, the resulting system will be slower than if 
the natural mapping from SW to HW is used
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Communication Performance
• Communication Bandwidth

– Data rate we can transmit data
– Determined by communication hardware, mechanism
– Slowest node for a data path can determine the communication 

bandwidth
• Communication Latency

– Propagation time
– Latency = Sender overhead + Time of Flight + Transmission 

time + Receiver overhead
– Crucial metric to performance!  

• Latency Hiding
– Methods to hide latency by overlapping operations
– But puts additional burden on software system and the 

programmer in many cases
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Sample Remote Access Times

Large latency of remote access can significantly impact 
performance

Must take into account in designing algorithms!

Load time for shared memory, Reply time for Message Passing
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Performance Example

• Unfortunately, stringing together N processors 
with performance P does not give us N*P as the 
new performance
– Factors coming into play

• Amount of parallelism
• Conventional factors (TLB miss, cache miss, etc.)
• Shared memory overhead
• Message passing overhead

• Can modify uniprocessor performance model:
– CPUTime = IC * CPI * Parallel_Overhead * CycleTime
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Communications Cost Example
• Multiprocessor with:

– 2000ns to handle remote memory reference
– All other references hit in local cache
– Cycle time is 10ns
– Base CPI is 1.0
– How much faster if there is no communication vs. 0.5% of 

instructions involve remote communications?
• New effective CPI:

– CPI(new) = Base_CPI + RemoteRequestRate * RemoteRequestCost
– RemoteRequestCost = 2000ns / 10ns  = 200 cycles 
– CPI(new) = 1.0 + (0.05)(200)  = 2.0

• All local machine is twice as fast as the new machine
– Means we’d like to limit communications as much as possible (e.g. cache)
– Of course this doesn’t include the work done by other processors in 

parallelizing an application!
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Sample Machines
• Central Shared Memory

– Sequent Symmetry S-81
• Bus interconnect, thirty 386 CPU’s with separate FPU

– IBM ES/9000
• Crossbar interconnect, 6 ES/9000 CPU’s

– BBN TC- 2000
• Butterfly switch interconnect, 512 Motorola 68000 CPU’s, hybrid 

NUMA architecture with preferred memory module

• Distributed Shared Memory
– Intel Paragon

• 2D mesh, 50 Mhz i860 CPU’s, 128Mb per node, up to 2048 nodes
– nCube

• Hypercube, custom CISC CPU, 64Mb per node, up to 8196 nodes
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Application Domain
• Multiprocessing performance is closely related to the 

application
– Much more care must be taken in construction a parallel 

algorithm to take advantage of the hardware than for a 
uniprocessor machine

• With uniprocessor, could rely on compiler techniques, hardware such as 
pipelining, etc. to help us out

• Not so much of this help available for parallel machines, more of a 
burden on the programmer

– Performance can vary significantly from one application to 
another, e.g.

• Matrix multiplication – lots of places for parallelism
• Computing a checksum – less room for parallelism, lots of dependencies 

on previous calculations
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Example Problems

• Fast Fourier Transform
– Convert signal from time to frequency domain

• LU Kernel
– Solve linear algebra computations

• Barnes
• Ocean

24

Barnes
– Galaxy evolution, N-bodies with gravitational forces acting on 

them
– To reduce computational time required

• Gravity drops off as square of the distance
• Takes advantage of this property by treating “far away” bodies as a 

single point of combined mass at the centroid of the bodies, reducing N 
items to a single item

• Each node represents an octree, or eight children representing eight 
cubes in space

• Tree created to represent density of objects in space
– Challenges for parallelism

• Each processor given some subtree to work on
• Distribution of bodies is non-uniform and changes over time
• So we must re-partition work among the processes to maintain balance
• Requires communicating small amounts of data, implying shared-

memory architecture may be most efficient
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Ocean
– Ocean simulation, influence of eddy and currents on large-scale 

flow in the ocean
– To reduce computational time required

• Ocean is broken up into grids, more grids gives more resolution and 
increases accuracy but requires more processing

• Processing a grid cell requires data from neighboring cells

– Challenges for parallelism
• Each processor given a grid cell to work on
• Processors must communicate with their neighbors in a synchronized 

fashion before proceeding to the next step
• Implies a DSM machine laid out in a mesh format would match nicely to 

this problem
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Computation vs. Communication
• A key factor in the performance of parallel programs is 

the ratio of computation to communication
– High implies lots of computation for each datum communicated 

(good since communication is expensive)
• Analysis of computation vs. communication varies on the 

problem and algorithm
– Results shown on next slide for the four sample apps
– We won’t show how we arose at these figures (work like this 

left for the Algorithms class)
– P = number of processors
– N = data set size
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Computation vs. Communication

Scaling on a per-processor basis
Computation:  As P increases, computation goes down 
Communication:  As P increases, comm.  goes down but less slowly

than computation
Ratio: As P increases, computation-to-comm ratio goes down, which 

is bad.  If data size the same, more inefficiencies in comm.
Equation tells us how to balance N with P to maintain
any desired amount of work spent in computation or comm
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OS Workload
• There is also overhead with the OS

– Just as we have with a uniprocessor
• Example on eight-processor system running “make”

– Distribution of execution time:

– Most time actually spent idle waiting on the disk!
• Bottom line:  Application behavior a key factor on 

performance with a parallel machine, thought must be 
given into the algorithm and performance-related issues


