
1

1

Multiprocessors
Chapter 8

CS448

2

The Greed for Speed
• Two general approaches to making computers faster
• Faster uniprocessor

– All the techniques we’ve been looking at so far, plus others…
– Nice since existing programs still work without changing them,

except may need to be re-compiled with optimizations
– But diminishing returns with higher cost, as with Amdahl’s law

• Parallel processor
– Typically a collection general purpose uniprocessors today
– Large variation in memory access
– Required for high-end computer systems, e.g. supercomputing,

DOE ASCI program

2

3

Parallel Processing

• Advantages
– Performance gains possible
– Can be relatively inexpensive today with commodity

processors
• Disadvantages

– Software must now be changed radically to take
advantage of the parallel machine

– Hardware challenges
– New types of overhead and organizational problems

await the parallel machine

4

Types of Parallelism
• We’ve already seen some sorts of parallelism…

– lookahead and pipelining
– data and control parallelism
– vectorization
– concurrency
– partitioning
– interleaving physical subsystems (e.g. memory)
– multiplicity and replication (e.g. multiple functional units)
– time and space sharing
– multitasking and multiprogramming
– multithreading
– distributed computing

• We’ll focus primarily on multiprocessing here

3

5

Multiprocessing

• A few issues that stand out from uniprocessing
– Communication

• Interprocessor communication now comes into play
• Can treat similarly to I/O
• Issues of latency and bandwidth

– Resource allocation
• Allocated by programmer, compiler, hardware?

6

Communication among Multiple
Processors

• Software perspective
– Shared memory

• E.g. one processor writes to memory location X, second processor reads
from memory location X

• Gets complicated with local vs. remote memory
• Sharing and access model
• Issues of speed, contention

– Explicitly send messages to specific processors via send and
receive

• Similar to how computers operate on a network
• Usually seen as message passing

• Hardware perspective
– Software and hardware models should not conflict for

efficiency
• E.g. software treats “broadcast to all” as a cheap operation, when

processor hardware does not support broadcast efficiently

4

7

Flynn’s Taxonomy
• Proposed in 1972
• SISD – Single Instruction Single Data

– Current uniprocessor
• SIMD – Single Instruction Multiple Data

– Same instruction operated on in parallel by multiple processors
using different data streams

• MISD – Multiple Instruction Single Data
– Many instructions operated on in parallel by multiple

instructions using the same data stream
– No computers use this today

• MIMD – Multiple Instruction Multiple Data
– Most flexible, each processor fetches and operates on its own

data independently

8

SIMD vs. MIMD
• Rise and Fall and Rise of the SIMD machine

– Was the earliest of the parallel computing models
• Iliac IV, Connection Machine, Thinking Machines

– Good at working with arrays in for-loops
– Not so good at case statements, each execution unit must

perform a different operation on its data
– Revived somewhat today with MMX, SSE

• MIMD Machine more flexible
– Can function as single-user machine for one application or

multiprogrammed machines running many tasks simultaneously
– Can build on cost/performance advantages of COTS

microprocessors
– Nearly all multiprocessors today built using commercial

uniprocessors

5

9

MIMD Architecture
• Two general classes of MIMD machines

– Centralized Shared-Memory (CSM) Architectures
• Typically used with a small number of processors
• Connected to a single centralized memory somehow, typically via a bus
• Sometimes called Uniform Memory Access (UMA) machines
• Scalability issues with larger number of processors

– Distributed Shared Memory (DSM) Architecture
• Individual nodes contain memory, interconnected by some type of

network
• Easy to scale up memory, good if most accesses are to local memory
• Latency and bandwidth issues between processors becomes key
• Sometimes called Non-Uniform Memory Access (NUMA) machines

• Hybrid machines incorporating features of both are also
possible

10

Centralized Shared Memory

Note: cache coherency problem

6

11

Distributed Shared Memory

12

Example Interconnection
Networks

2D Mesh
Bus

Hypercube

7

13

Models for Memory,
Communications

• Shared Memory
– Does not mean there is a single centralized memory

• Address Space
– May consist of multiple private address spaces logically disjoint

in addition to shared memory
– Essentially separate computers; sometimes called a

multicomputer machine
– For machines with multiple address spaces, communication of

data performed by explicitly passing data between processors
• Called Message Passing Machines

14

Message Passing Machines
• Data transmitted through interconnect similar to sending

over a LAN
• For processor A to access or operate on data in processor

B
– A sends message to request data or operation to B
– Message considered a Remote Procedure Call (RPC)
– B performs operation or access on behalf of A and returns the

result with a reply message
• Synchronous when A waits for reply before continuing
• Asynchronous when A continues operating while waiting

for reply from B

• Program libraries exist to make RPC and message
passing easier, e.g. MPI

8

15

Comparison of Communication
Mechanisms

• Shared Memory Communication
– Compatibility with well-understood mechanisms
– Ease of programming, similar to uniprocessor
– Low overhead for communicating small items

• Memory mapping in hardware, not through OS
– Can use hardware-controlled caching to reduce frequency of

remote communication
• Message Passing Communication

– Hardware can be simplified in some cases (we’ll see coherent
caching problems in a minute)

– Communication is explicit, forcing programmers to pay
attention and optimize (like delayed branch)

• Could be a disadvantage as well!

16

Should Match SW to HW
• Message Passing model on shared memory architecture

– Not too difficult, could “send” data by copying from one
portion of the address space to another

• Shared Memory on Message Passing architecture
– More difficult, without hw support for shared memory, the OS

will need to handle things
– High overhead for sending small loads and stores

• In either case, the resulting system will be slower than if
the natural mapping from SW to HW is used

9

17

Communication Performance
• Communication Bandwidth

– Data rate we can transmit data
– Determined by communication hardware, mechanism
– Slowest node for a data path can determine the communication

bandwidth
• Communication Latency

– Propagation time
– Latency = Sender overhead + Time of Flight + Transmission

time + Receiver overhead
– Crucial metric to performance!

• Latency Hiding
– Methods to hide latency by overlapping operations
– But puts additional burden on software system and the

programmer in many cases

18

Sample Remote Access Times

Large latency of remote access can significantly impact
performance

Must take into account in designing algorithms!

Load time for shared memory, Reply time for Message Passing

10

19

Performance Example

• Unfortunately, stringing together N processors
with performance P does not give us N*P as the
new performance
– Factors coming into play

• Amount of parallelism
• Conventional factors (TLB miss, cache miss, etc.)
• Shared memory overhead
• Message passing overhead

• Can modify uniprocessor performance model:
– CPUTime = IC * CPI * Parallel_Overhead * CycleTime

20

Communications Cost Example
• Multiprocessor with:

– 2000ns to handle remote memory reference
– All other references hit in local cache
– Cycle time is 10ns
– Base CPI is 1.0
– How much faster if there is no communication vs. 0.5% of

instructions involve remote communications?
• New effective CPI:

– CPI(new) = Base_CPI + RemoteRequestRate * RemoteRequestCost
– RemoteRequestCost = 2000ns / 10ns = 200 cycles
– CPI(new) = 1.0 + (0.05)(200) = 2.0

• All local machine is twice as fast as the new machine
– Means we’d like to limit communications as much as possible (e.g. cache)
– Of course this doesn’t include the work done by other processors in

parallelizing an application!

11

21

Sample Machines
• Central Shared Memory

– Sequent Symmetry S-81
• Bus interconnect, thirty 386 CPU’s with separate FPU

– IBM ES/9000
• Crossbar interconnect, 6 ES/9000 CPU’s

– BBN TC- 2000
• Butterfly switch interconnect, 512 Motorola 68000 CPU’s, hybrid

NUMA architecture with preferred memory module

• Distributed Shared Memory
– Intel Paragon

• 2D mesh, 50 Mhz i860 CPU’s, 128Mb per node, up to 2048 nodes
– nCube

• Hypercube, custom CISC CPU, 64Mb per node, up to 8196 nodes

22

Application Domain
• Multiprocessing performance is closely related to the

application
– Much more care must be taken in construction a parallel

algorithm to take advantage of the hardware than for a
uniprocessor machine

• With uniprocessor, could rely on compiler techniques, hardware such as
pipelining, etc. to help us out

• Not so much of this help available for parallel machines, more of a
burden on the programmer

– Performance can vary significantly from one application to
another, e.g.

• Matrix multiplication – lots of places for parallelism
• Computing a checksum – less room for parallelism, lots of dependencies

on previous calculations

12

23

Example Problems

• Fast Fourier Transform
– Convert signal from time to frequency domain

• LU Kernel
– Solve linear algebra computations

• Barnes
• Ocean

24

Barnes
– Galaxy evolution, N-bodies with gravitational forces acting on

them
– To reduce computational time required

• Gravity drops off as square of the distance
• Takes advantage of this property by treating “far away” bodies as a

single point of combined mass at the centroid of the bodies, reducing N
items to a single item

• Each node represents an octree, or eight children representing eight
cubes in space

• Tree created to represent density of objects in space
– Challenges for parallelism

• Each processor given some subtree to work on
• Distribution of bodies is non-uniform and changes over time
• So we must re-partition work among the processes to maintain balance
• Requires communicating small amounts of data, implying shared-

memory architecture may be most efficient

13

25

Ocean
– Ocean simulation, influence of eddy and currents on large-scale

flow in the ocean
– To reduce computational time required

• Ocean is broken up into grids, more grids gives more resolution and
increases accuracy but requires more processing

• Processing a grid cell requires data from neighboring cells

– Challenges for parallelism
• Each processor given a grid cell to work on
• Processors must communicate with their neighbors in a synchronized

fashion before proceeding to the next step
• Implies a DSM machine laid out in a mesh format would match nicely to

this problem

26

Computation vs. Communication
• A key factor in the performance of parallel programs is

the ratio of computation to communication
– High implies lots of computation for each datum communicated

(good since communication is expensive)
• Analysis of computation vs. communication varies on the

problem and algorithm
– Results shown on next slide for the four sample apps
– We won’t show how we arose at these figures (work like this

left for the Algorithms class)
– P = number of processors
– N = data set size

14

27

Computation vs. Communication

Scaling on a per-processor basis
Computation: As P increases, computation goes down
Communication: As P increases, comm. goes down but less slowly

than computation
Ratio: As P increases, computation-to-comm ratio goes down, which

is bad. If data size the same, more inefficiencies in comm.
Equation tells us how to balance N with P to maintain
any desired amount of work spent in computation or comm

28

OS Workload
• There is also overhead with the OS

– Just as we have with a uniprocessor
• Example on eight-processor system running “make”

– Distribution of execution time:

– Most time actually spent idle waiting on the disk!
• Bottom line: Application behavior a key factor on

performance with a parallel machine, thought must be
given into the algorithm and performance-related issues

