Sistemas Embarcados

Fabiano Hessel

hessel@inf.pucrs.br http://www.inf.pucrs.br/~hessel

Outline

- ☆ Platforms: system-on-chip, networks.
- ★ Architectures, applications, methodologies.
- ₩ Standards-based design.

Embedded Computing

© 2005 Wavne Wolf

Introduction

- ₩ What are embedded systems?
- # Challenges in embedded computing system design.

Embedded Computing

© 2005 Wayne Wolf

Definition

- # Embedded system: any device that includes a programmable computer but is not itself a general-purpose computer.
- ★ Take advantage of application characteristics to optimize the design

Embedded Computing

© 2005 Wayne Wolf

Example embedded computing systems Notorola Siemens Apple

© 2005 Wayne Wolf

BMW

Embedded Computing

Early history

- # Automobiles used microprocessor-based engine controllers starting in 1970's.
 - Control fuel/air mixture, engine timing, etc.
 - △ Multiple modes of operation: warm-up, cruise, hill climbing, etc.
 - □ Provides lower emissions, better fuel efficiency.

Embedded Computing

puting

Microprocessor varieties

- ₩ Microcontroller: includes I/O devices, onboard memory.
- ₩ Digital signal processor (DSP): microprocessor optimized for digital signal processing.
- ₩ Typical embedded word sizes: 8-bit, 16bit, 32-bit.

Embedded Computing

© 2005 Wavne Wolf

Application examples

- oven, etc.
- $\mbox{\em \em K}$ Canon EOS 3 has three microprocessors.
 - control systems.
- ₩ Digital TV: programmable CPUs + hardwired logic.

Embedded Computing © 2005 Wayne Wolf

Application Examples, contd.

- ₩ Personal digital assistant (PDA).
- ₩ Printer.

- ₩ PC keyboard (scans keys).

Embedded Computing

Multiprocessor systems-onchips

- ₩ Usually heterogeneous multiprocessor:

Embedded Computing

© 2005 Wavne Wolf

Consumer electronics categories

	2001	2002	2003	2004
Satellite TV	\$1.18	\$1.12	\$1.48	\$1.89
DVR (40E6)	0.14	0.57	0.18	0.54
DVD	2.1	2.43	2.7	2.46
Set-top Internet	0.20	0.12	0.63	0.341
PC (120E6)	12.96	12.61	15.58	17.2

Embedded

© 2005 Wavne Wolf

Wall Street Journal/EIA

Consumer electronics prices

Best Buy November 2003:

Characteristics of embedded systems

- ₩Very high performance, Sophisticated functionality.

 □Vision + compression + speech + networking all on the same platform.
- ₩ Multiple task, heterogeneous.
- ₩Real-time.
- ₩Often low power.
- ₩Highly reliable.

△I reboot my piano every 4 months, my PC every day.

- ★Designed to tight deadlines by small teams.
- **器Low manufacturing cost.**

Embedded Computing

© 2005 Wayne Wolf

Real-time operation

- # Many systems are multi-rate: must handle operations at widely varying rates.

Embedded Computing

© 2005 Wayne Wolf

Mudge et al: Mobile supercomputing

- - Cryptography.
 - □ Augmented reality.
 - □ Typical applications (email, etc.).
- ₩ Requires 16x 2 GHz Pentium 4.
- ₩ Peak power must not exceed 75 mW.
 - Assumes 5% battery improvement per year.

Embedded Computing

ing © 2005 Wayne Wolf

Non-functional requirements

- ₩ Many embedded systems are massmarket items that must have low manufacturing costs.
 - □ Limited memory, microprocessor power,
- powered devices.
 - system cost even in wall-powered devices.

Embedded Computing

© 2005 Wayne Wolf

Design teams

- designers.
- - □ Can't miss back-to-school window for calculator.

Embedded Computing

© 2005 Wayne Wolf

Challenges in embedded system design

- ★ How much hardware do we need?
- - ☐ Turn off unnecessary logic? Reduce memory accesses?

Embedded Computing

© 2005 Wayne Wolf

Challenges, etc.

- ₩ Does it really work?

 - □ Does the implementation meet the spec?
 - characteristics?
- How do we work on the system?
 - □ Observability, controllability?

Embedded Computing

Design methodologies

- # Understanding your methodology helps you ensure you didn't skip anything.

Embedded Computing

© 2005 Wavne Wolf

Design goals

- ₩ Power consumption.

Embedded

© 2005 Wayne Wolf

Levels of abstraction

Embedded Computing

© 2005 Wayne Wolf

Top-down vs. bottom-up

- ★ Bottom-up design:
 - work from small components to big system.

Embedded Computing

© 2005 Wayne Wolf

Stepwise refinement

- - analyze the design to determine characteristics of the current state of the design:
 - □ refine the design to add detail.

Embedded Computing

© 2005 Wayne Wolf

Requirements

- ★ May be developed in several ways:
 - □ talking directly to customers;
 - □ talking to marketing representatives;
 - providing prototypes to users for comment.

Embedded Computing

uting © 2005 Wayne Wolf

Functional vs. nonfunctional requirements

- - □ output as a function of input.
- - power consumption;
 - □ reliability;
 - etc.

Embedded Computing

© 2005 Wavne Wolf

GPS moving map needs

- # Functionality: For automotive use. Show major roads and landmarks.
- ★ User interface: At least 400 x 600 pixel screen. Three buttons max. Pop-up menu.
- # Performance: Map should scroll smoothly. No more than 1 sec power-up. Lock onto GPS within 15 seconds.
- Standard Sta

GPS moving map needs, cont'd.

- ₩ Physical size/weight: Should fit in hand.
- # Power consumption: Should run for 8 hours on four AA batteries.

Embedded Computing

© 2005 Wayne Wolf

Specification

- # A more precise description of the system:

 - provides input to the architecture design process.

© 2005 Wayne Wolf

- * May include functional and nonfunctional elements.
- \Re May be executable or may be in mathematical form for proofs.

omputing

GPS specification

- - □ user interface;
 - operations required to satisfy user requests;
 - □ background operations needed to keep the system running.

Embedded Computing

© 2005 Wayne Wolf

Architecture design

- **#** What major components go satisfying the specification?

- # Must take into account functional and non-functional specifications.

Embedded

mputing

Designing hardware and software components Must spend time architecting the system before you start coding. Some components are ready-made, some can be modified from existing designs, others must be designed from scratch.

© 2005 Wayne Wolf

System integration

- # Have a plan for integrating components to uncover bugs quickly, test as much functionality as early as possible.

Embedded Computing © 2005 Wayne Wolf

Summary

Embedded Computing

- - △ Many systems have complex embedded hardware and software.
- # Embedded systems pose many design challenges: design time, deadlines, power, etc.
- ★ Design methodologies help us manage the design process.

Embedded Computing © 2005 Wayne Wolf

Platforms

- ₩ An architecture that is designed for an application domain:
 - □ Can be used in several products.
 - Allows customization.
- ₩ Platforms are often customized for their target
- $\mbox{\em \mathbb{H}}$ Platforms spread out development costs over more products.
- platform...

Embedded Computing

© 2005 Wavne Wolf

Why multiple platforms?

- ₩ Sufficiently general solutions don't fit on one chip.

Embedded Computing

© 2005 Wavne Wolf

Intel IXP2850 network processor

control processing, security.

¥ Software development environment includes simulator.

Embedded Computing

© 2005 Wayne Wolf

TI OMAP OMAP 5910: communications, multimedia. C55x DSP MPU ₩ Multiprocessor bridge with DSP, RISC. interface I/O Memory ctrl System DMA control ARM9 Embedded Computing © 2005 Wayne Wolf

ST Nomadik

multimedia.

Embedded Computing

ST MMDSP+

- ₩ Embedded processor core used in multiple chips:
 - □ Runs at 175 MHz.
 - □ 1 cycle per instruction.

 - □ 16/24-bit fixed point.

 - □ C programmed
 - □ Fully synthesizable.

Embedded Computing

Automotive embedded systems

- 100 microprocessors:
 - △ 4-bit microcontroller checks seat belt;

 - △ 16/32-bit microprocessor controls engine.

Embedded Computing

© 2005 Wavne Wolf

BMW 850i brake and stability control system

- ★ Anti-lock brake system (ABS): pumps brakes to reduce skidding.
- controls engine to improve stability.
- ₩ ABS and ASC+T communicate.
 - △ ABS was introduced first---needed to interface to existing ABS module.

Embedded Computing

© 2005 Wayne Wolf

BMW 850i, cont'd. sensor sensor brake brake hydraulic ABS pump brake brake sensor sensor Embedded Computing © 2005 Wayne Wolf

The eternal triangle software architectures architectures determine capabilities. applications design decisions. Methodologies allow methodologies repeatable, predictable design. Embedded Computing © 2005 Wayne Wolf

Observations and implications and chunky. ₩ IP components must be adapted to play together.

adaptable.

Embedded Computing

Software in consumer devices (ST)

- standards (Dolby, MP3, etc.):
- standards (MPEG-2, DV, etc.):
- ¥ 1 million lines of code.
- 業 2 million lines of code and counting.

Embedded

© 2005 Wavne Wolf

Software and MPSoC design

- ★ The MPSoC must run the application.
 - □ Design verification must include the software running on the hardware.
- ★ May not know all possible code at design time.
 - □ Limits design characterization.

Embedded Computing

© 2005 Wavne Wolf

MPSoCs and standards

- - MPSoCs need large markets to justify chip development costs, reduce manufacturing overhead.
- - High performance.
- - Platform must allow multiple implementations.
 - Standard is complex and hard to implement.

Embedded Computing

© 2005 Wayne Wolf

Design challenges in standards-driven markets

- - Standards allow differentiation.
- standard's scope.
 - □ User interface, etc.

Embedded Computing

© 2005 Wayne Wolf

Standards-based systems

- for product.
- to the software.
- ₩ Must make some changes to the software.

Embedded Computing

© 2005 Wayne Wolf

Characteristics of reference implementations

- The specification does not describe hardware or software.
 - □ The spec is in the domain of signal processing, etc.
- # Designed for and tested on workstations.

 - Poor cache behavior.
 - Single process.
 - □ Limited real-time behavior.
- The executable spec misrepresents some system properties:
 - Error handling.
 - □ Buffer management.

Embedded Computing

H.264 motion estimation, cont'd.

- # Multiple reference frames increases accuracy.
- # Once again, receiver is more complex.

Embedded Computing

omputing © 2005 Wayne Wolf

Why are standards so complex?

Algorithm designers like to design algorithms.

★Standards bodies
 must embody
 competing interests,
 ideas in their
 standards.

MPEG Tamper

Embedded Computing

© 2005 Wavne Wolf

Design refinement

- ₩ Bad news:
 - △ hard to learn the platform in order to change it.

Worldwide shipping by UPS ...

roughly US\$ 50 for CD and US\$ 100 for paper copy

(1500 pages, heavy!)

Bluetooth.com

- ₩ Good news:
 - □ an existing design can be measured, analyzed, and refined.

Embedded Computing

© 2005 Wayne Wolf

Four types of people

- - □ Don't like programming.
 - □ Don't know that hardware exists.
- - □ Don't like hardware.
- ₩ Hardware people.

 - □ Don't know applications exist.
- - □ Don't know anything.
 - □ Don't do anything.

Embedded Computing

© 2005 Wayne Wolf

Example: MPEG-2 codec

- ₩ One of the reference MPEG-2 codecs.
- # Implementers must port to chosen platform.
 - □ Limited memory.
 - □ Limited CPU.

Embedded Computing

uting © 2005 Wayne Wolf

MPEG-2 porting challenges

- ★ Codec uses a mixture of buffering strategies.

 - Some buffers are allocated from the heap.
- # May need to change number representation.

Embedded Computing

uting © 2005 Wayne Wolf

Example: H.264 codec

- ₩ Reference encoder is 700,000 lines of C code.
 - □ Uses simple algorithms.
- - □ Display sizes.

Embedded

© 2005 Wavne Wolf

H.264 porting challenges

- - □ Large call graph.
- representation.
- - CPU time.

Embedded Computing

© 2005 Wavne Wolf

Multiple standards

- **Many MPSoCs must implement multiple standards:**
 - Communications.
 - Networking.

 - Security.
- lpha Requires running a lot of different types of algorithms.

 - Good case for specialization, co-design, configurable CPUs, etc.
 Need some general-purpose computers for load sharing, compatibility.

Embedded Computing

© 2005 Wayne Wolf

Platforms, standards, and **MPSoCs**

- system.
- ₩ Programmability is key to platform-based design.

Embedded Computing

Challenges in platform-based design

- Don't have the full application.
 - application.
- ₩ Must determine the appropriate level of programmability.
 - Programmability often costs in area, power.
- with the chip.

Embedded Computing

© 2005 Wayne Wolf

Transaction-level modeling is not enough

- ★ The MPSoC must run the complete application.
 - but not sufficient.
- - over a long period.

Embedded Computing

© 2005 Wayne Wolf

Summary

- - Must deal with hardware and software.
- - Reference implementations must be optimized,
- - optimization.
 - Software designers---performance/power evaluation, debugging.

Embedded Computing